pyBinder: Quantitation to Advance Affinity Selection-Mass Spectrometry
The Pentelute Lab aims to invent new chemistry for the efficient and selective modification of proteins, to ‘hijack’ these biological machines for efficient drug delivery into cells and to create new machines to rapidly and efficiently manufacture peptides and proteins.
Pentelute Lab, Chemistry, MIT, Chemistry Department, Boston, Cambridge, Biology, Peptides, Peptide, Proteins, Science, Rapid, Brad Pentelute, Brad,
18347
portfolio_page-template-default,single,single-portfolio_page,postid-18347,bridge-core-3.0.1,qode-page-transition-enabled,ajax_fade,page_not_loaded,,paspartu_enabled,paspartu_on_top_fixed,paspartu_on_bottom_fixed,qode_grid_1200,qode_popup_menu_push_text_top,qode-theme-ver-28.7,qode-theme-bridge,disabled_footer_top,wpb-js-composer js-comp-ver-6.8.0,vc_responsive
 

pyBinder: Quantitation to Advance Affinity Selection-Mass Spectrometry

pyBinder: Quantitation to Advance Affinity Selection-Mass Spectrometry

Joseph S. Brown Michael A. Lee Wayne Vuong Andrei Loas Bradley L. Pentelute*

Abstract

Affinity selection-mass spectrometry (AS-MS) is a ligand discovery platform that relies upon mass spectrometry to identify molecules bound to a biomolecular target. When utilized with large peptide libraries (108 members), AS-MS sample complexity can surpass the sequencing capacity of modern mass spectrometers, resulting in incomplete data, identification of few target-specific ligands, and/or incomplete sequencing. To address this challenge, we introduce pyBinder to perform quantitation on AS-MS data to process primary MS1 data and develop two scores to rank the peptides from the integration of their peak area: target selectivity and concentration-dependent enrichment. We benchmark pyBinder utilizing AS-MS data developed against antihemagglutinin antibody 12ca5, revealing that peptides that contain a motif known for target-specific high-affinity binding are well characterized by these two scores. AS-MS data from a second protein target, WD Repeat Domain 5 (WDR5), is analyzed to confirm the two pyBinder scores reliably capture the target-specific motif-containing peptides. From the results delivered by pyBinder, a list of target-selective features is developed and fed back into subsequent MS experiments to facilitate expanded data generation and the targeted discovery of selective ligands. pyBinder analysis resulted in a 4-fold increase in motif-containing sequence identification for WDR5 (from 3 to 14 ligands discovered), showing the utility of the two scores. This work establishes an improved approach for AS-MS to enable discovery outcomes (i.e., more ligands identified), but also a way to compare AS-MS data across samples, protocols, and conditions broadly.

Category
2025, Publications